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Abstract

Fermilab’s Integrable Optics Test Accelerator (IOTA)
is an electron storage ring designed for testing advanced
accelerator physics concepts, including implementation of
non-linear integrable beam optics and experiments on op-
tical stochastic cooling. In this report we describe the con-
tribution of RadiaBeam Technologies to the IOTA project
which includes non-linear magnet engineering, prototype
fabrication and measurement.

INTRODUCTION

IOTA is an electron ring designed as a proof-of-principle
of non-linear integrable optics [1] at the ASTA facility [2].
Nonlinear optics are predicted to increase stability of the
electron beam through Landau damping [3] and the nat-
ural tune spread of the electron beam will also increase
dynamic aperture [1], leading to more intense beams in
high-energy physics machines. The goal of the project is
to study single particle dynamics in the non-linear regime
using a 150 MeV electron beam in a∼40 m circumference
ring with 4 non-linear inserts that are each 2 m long [4].
While the beam dynamics of the non-linear optics system
is being studied at Fermilab, the magnetic inserts are being
designed and manufactured at RadiaBeam Technologies.

In this paper we discuss the magnetic design and toler-
ance requirements of the IOTA inserts and the measure-
ment system being built to measure the first prototype of
these unique magnets. The goals of the prototype magnet
insert are to gain experience manufacturing a complex ge-
ometry, determine the cross-talk between adjacent magnet
segments, and measure the field of a challenging insert that
is tens of centimeters long with a sub-centimeter aperture.

DESIGN

The approach to this problem is the standard magne-
tostatic approach [5]: find the equipotential surfaces and
choose one to fill with iron, correct the edge fields for the
finite extent of the real magnets and then magnetize that
iron via a current carrying coil on a ”far off” yoke. The
magnetostatic problem is defined in terms of the magnetic
vector potential for a 2D object:
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WhereBρ is the magnetic rigidity of the particles,c is a
scale factor with unitsm1/2, t is a unitless strength param-
eter,x, y ands are the horizontal, vertical and longitudinal
coordinates, respectively, andβ(s) = β∗ + s2

β∗
is the beta-

function in the non-linear insert withβ∗ = 0.727 m at the
longitudinal center of the insert.

The vector potential (and as we will see, the scalar po-
tential) is clearly continuous in the longitudinal coordinate
but it would be very difficult to create a single 2 m long de-
vice that varies continuously to produce the desired scaling.
Accordingly, the 2 m device is divided into 20 sections of
constant parameters that are 6.5 cm long, between each sec-
tion is a 3.5 cm long non-magnetic block (or air gap) used
to separate the different segments. Because of the symme-
try around the longitudinal center of the device, there are
10 different segments. The segments are labeled 1 through
10 with 1 being nearest the center of the 2 m device and 10

Figure 1: Contour plot of the equipotential lines of
φ(xN , yN). The superimposed green line is the line taken
for the face of the poles.
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Figure 2: Real space outline of the 2D IOTA design for
segments 1 (blue), 5 (green) and 10 (red), including a con-
tinuous return yoke. The dashed lines show the outline of
the excitation coils. All dimensions are in centimeters.

being the outer most segment.
To lowest order, the problem is limited to a 2D plane, so

the scalar potential is related to the vector potential via a
π/2 rotation about the longitudinal axis [6]:
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Here, the scalar potential has been normalized such that
Φ(x, y, s) ≡ Bρc2

β(s) φ(x/β
1/2, y/β1/2) with xN ≡ x/β1/2

andyN ≡ y/β1/2. Because we know the scaled form of
the potential and how the beta-function evolves through the
non-linear magnet, we can solve for the pole face once and
then scale it via the beta-function for all of the magnets.
Further, because of the four-fold symmetry of the problem,
we need only find the solution in one quadrant. The equipo-
tential lines of the scalar potential in Eq. 2 are shown in Fig.
1. The green line in Fig. 1 shows the contour that will be
used to define the pole faces. Because the solution is scaled
by β(s), this is the face for all of the magnets.

We note here that the potentials given by Eqs. 1 and 2
have singularities at (xN = ±c, yN = 0), so whatever
solution is found can never include normalized coordinates
greater thanc. Further, because the singularities are located
on they = 0 line, the vertical aperture is larger than the
horizontal aperture.

In order to make the design easier to produce we have
decided to make a single yoke design for all of the different
pole tips. This way, the yokes can be produced en masse
while the tighter tolerance pole tips are made for each of the
segments separately. Fig. 2 shows a 2D outline of poles 1
(the smallest pole, it is the pole closest to the longitudinal
symmetry point), 5 and 10 (the largest pole) of the IOTA
insert design along with a continuous return yoke and a
single excitation coil. The curved surface of each segment
is given by the green line in Fig. 1.

Above the curved pole tip, a straight face is extended
to 1.3 times the height of the highest point on the curved
face. This straight corner improves the agreement between

Figure 3: Isometric view of the IOTA insert prototype. A
plate on top has been hidden to show detail below. The
copper items are the excitation coils, the dark grey items
are the steel poles and return yokes and light grey items are
aluminum.

the simulation results and the desired field. The value was
found via 2D optimization of the field using the code Pois-
son [7]. The height of the yoke is defined by the height of
the pole face extension for the number 10 segment. On the
lower side, the curved face is cut off by a flat section that is
”chamfered” on the outside edge (to the right in Fig. 2) to
prevent field concentration there. These underside changes
are made in the scaled coordinate system, so they are dif-
ferent for each magnet.

An isometric view of the prototype insert can be seen
in Fig. 3. The prototype insert will contain 4 complete
segments. Because the smallest aperture comes from the
number 1 pole, the prototype insert will have the follow-
ing segments (in order): 1, 1, 2, 3. This combination of
segments allows us to measure the smallest aperture mag-
nets and the coupling between segments. 3D simulation
using the code Maxwell [8] has shown that the longitudinal
symmetry point of a full length insert will be faithfully re-
produced between the two number 1 poles in the prototype.

NONLINEAR MAGNET REQUIREMENTS

Figure 4: Close up image of the tongue and groove reluc-
tance gap.

The magnets shown in Fig. 2 are closed yoke magnets.
However, because the beta-function of the electron beam
evolves along the length of the insert, each of the 10 seg-
ments requires a different excitation magnitude. To reduce
the number of power supplies needed, we have decided to



Figure 5: View of the IOTA insert measurement system.

use a single excitation coil for all of the yokes and to tune
the field in each segment using a reluctance gap that can be
set by moving the return yoke of each segment individu-
ally. If the reluctance gap were comprised of two flat faces,
the required precision of the position of the yoke relative to
a fixed pole tip is very tight, a few micrometers. To reduce
the required tolerance we opted for a tongue and groove
approach, this results in a required positional tolerance of
∼50 µm. A close up of the tongue and groove reluctance
gap can be seen in Fig. 4.

The field quality requirements were defined using a fre-
quency map analysis [4], the analysis indicates that a good
field region of |y| ≈ c and |x| ≈ c/2, with good being
defined as difference from the ideal field by less than 1%,
is required. Further, the magnetic center of the segments
must be placed along the same line with an accuracy of
50 µm or less. To compare the magnetostatic simulations
to the theoretical field, the simulated field is compared to
the ideal field on they-axis (Bx) andx-axis (By). Of the
above defined magnets, the number 1 pole has the worst
field quality: the difference is less than 0.5% at all points
within (x < 0.6c,y < 0.8c). Therefore, simulations show
that all magnets are potentially within the desired tolerance.
Harmonic analysis of the fields produced by Poisson shows
that the field faithfully reproduces the quadrupole and oc-
topole moments with 0.1% of the desired values while the
dodecapole moment is within 3% of the desired value (rN

= 0.5). The fields in the aperture are quite small atB ≤
100 G, usingt=0.45,c = 0.009 m1/2 andBρ = 0.502 T-m,
which are the design parameters for the prototype.

MEASUREMENT SYSTEM

To measure the magnetic field of the prototype insert re-
quires that we design a measurement system with over 40
cm of travel in the longitudinal direction that can fit within
circular gap of∼10 mm diameter within the number 1 pole

Figure 6: View of the hall probe holder showing the cus-
tom mechanics to allow probe motion in the radial direc-
tion. The red and green crosses are the locations of the hall
probes.

(see Fig. 5). Additionally, the hall probe must be able to
move within this 10 mm diameter gap. To accomplish this,
we have designed a ”rod and radius” system wherein a set
of miniature hall probes [9] are mounted in a custom holder
in a rod of the specified diameter (see Fig. 6). The rod is
moved longitudinally via a linear motion stage and rota-
tionally via a rotational stage. The radius is set manually
with a set screw. This design will allow us to measure a
large fraction of the desired aperture. We will use 4 hall
probes that are separated longitudinally in the probe holder,
such that two different radii within the IOTA insert aper-
ture can be measured in a single, automated longitudinal
scan (see Fig. 6). We intend to zero and measure each of
the probes in a pair of common standards and to have an
overlap region that can be measured by both sets of probes
for direct comparison. At the time of publication, the IOTA
insert is being manufactured and the measurement design
is being completed.
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