HIGH AVERAGE CURRENT BETATRONS FOR INDUSTRIAL AND SECURITY APPLICATIONS*

S. Boucher†, R. Agustsson, P. Frigola, A. Murokh, M. Ruelas, RadiaBeam Technologies, Los Angeles, CA 90025 U.S.A.
F. O’Shea, J. Rosenzweig, G. Travish, UCLA, Los Angeles, CA 90095 U.S.A.

Abstract
The fixed-field alternating-gradient (FFAG) betatron has emerged as a viable alternative to RF linacs as a source of high-energy radiation for industrial and security applications. For industrial applications, high average currents at modest relativistic electron beam energies, typically in the 5 to 10 MeV range, are desired for medical product sterilization, food irradiation and materials processing. For security applications, high power x-rays in the 3 to 20 MeV range are needed for rapid screening of cargo containers and vehicles. In a FFAG betatron, high-power output is possible due to high duty factor and fast acceleration cycle: electrons are injected and accelerated in a quasi-CW mode while being confined and focused in the fixed-field alternating-gradient lattice. The beam is accelerated via magnetic induction from a betatron core made with modern low-loss magnetic materials. Here we present the design and status of a prototype FFAG betatron, called the Radiatron, as well as future prospects for these machines.

CONVENTIONAL BETATRON
Betatron accelerators were introduced in the early 1940’s, and soon found common application in research, medicine and industry. From the viewpoint of industrial applications, betatron acceleration is still attractive because it avoids the expense and complication of using high-power RF.

The conventional betatron [1] is a fixed-orbit circular induction accelerator. A changing magnetic field confines and focuses the particles, while also generating an azimuthal electric field which accelerates the particles. The condition relating the rate of change of the magnetic flux through the circular orbit, \(\Phi \), and the local (at the design trajectory radius \(R \)) bending field \(B_z(R) \) to maintain this equilibrium orbit is

\[
\Phi = 2\pi R^2 B_z, \quad \text{or} \quad B_z = \frac{\Phi}{2\pi R}, \quad (2)
\]

where \(\overline{B_z} \) is the average is over the interior of the orbit, and \(C \) is a constant.

Equation 1 is termed the betatron condition. In early betatrons the accelerating and bending fields were created by a single dipole, with a shaped gap to create the proportionality at the desired radius. Later, the functions of the accelerating core and the bending field were separated to reduce the energy needed to drive the core [2]; core biasing — setting \(C \) in opposition to the direction of increase in \(B_z \) — also allowed improvement in the total available acceleration. The correct proportionality between the core and bending fields in such devices was maintained by connecting the coils of the bending and accelerating magnets in parallel.

Despite these and other improvements, the average current capability of the conventional betatron was limited by several factors:
- The transverse focusing is weak.
- The duty cycle is limited to a few percent – current may only be injected during a small portion of the betatron cycle because the bending fields change in time.
- The momentum acceptance of the device is very low — there is a narrow range of equilibrium orbits of differing momenta allowed in the machine at a given time.
- The cycle rate is limited by the rapid increase of eddy current losses at higher frequency.

FFAG BETATRON
FFAG accelerators were independently proposed by Ohkawa [3], Symon [4], and Kolomensky [5] in the 1950’s and several electron accelerators were built by the Midwestern Universities Research Association (MURA) in the 1950’s and 1960’s as prototypes for future high energy proton accelerators [6,7,8]. The scaling FFAG, in which the tunes are constant throughout the acceleration cycle, has a vertical magnetic field in the device midplane given by

\[
B(r,\varphi) = B_0(r/r_0)^k f(\varphi),
\]

where \(k \) is a constant, and \(f(\varphi) \) is a periodic function describing the azimuthal variation of the field around the accelerator. Creating the radial variation with field index \(k \) requires either current distributions on the pole faces, or shaping of the magnet poles, or a combination of these two approaches. There are two principle types of azimuthal variation \(f(\varphi) \): radial and spiral. The radial type are plain “pie slice” shaped sectors, whereas the spiral type include a spiral angle to add edge focusing.

*Work supported by DOE Grant DE-FG02-04ER84051
†boucher@radiabeam.com

08 Applications of Accelerators, Technology Transfer and Relations with Industry
U04 Other Applications
1-4244-0917-9/07/$25.00 ©2007 IEEE
Applying FFAG focusing to the betatron, the functions of acceleration and focusing are separated, and the focusing field is kept fixed in time (not ramped). FFAG focusing increases the current capability of the betatron in the following ways:

- There is a large increase in the maximum duty factor, since the fixed-in-time guide field allows long-pulse injection. As electrons are being accelerated, moving to outer orbits, more particles are being continuously injected and accelerated.
- The focusing is strong, thus the size of the beam is better controlled, allowing more current to be loaded into the machine.
- There is a wide spectrum of stable orbits, for all momenta from injection to extraction, so a wide range of injected momenta will be accepted and accelerated.
- The charge in the accelerator is spread out over many orbits in a sheet, reducing the space-charge effects.

One final advantage of the FFAG betatron is that the issue of eddy current losses is confined to the betatron core. This simplifies the cooling and minimizes the portion of the accelerator that must be made from special materials (e.g. laminations). In particular, the core may be made of advanced, nanocrystalline magnetic materials such as Finemet [9], which has very low core loss and comparatively high saturation (see Table 1). Using Finemet for the betatron core allows cycling at very high frequency (> 10 kHz), thus the acceleration rate is very fast, further mitigating space charge effects.

![Table 1: Core loss and Saturation of Magnetic Materials](image)

<table>
<thead>
<tr>
<th>Material</th>
<th>Core Loss (kW/m^3 A^3) at 100 kHz, 0.2 T</th>
<th>Saturation Induction (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si Steel</td>
<td>8000</td>
<td>1.9</td>
</tr>
<tr>
<td>Mn-Zn Ferrite</td>
<td>500</td>
<td>0.5</td>
</tr>
<tr>
<td>Fe Amorphous alloy (Metglas)</td>
<td>2000</td>
<td>1.6</td>
</tr>
<tr>
<td>Co Amorphous alloy</td>
<td>300</td>
<td>0.6</td>
</tr>
<tr>
<td>Nanocrystalline alloy</td>
<td>400</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Table 2: Radiatron Specifications

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (inj/ext)</td>
<td>45 keV / 5 MeV</td>
</tr>
<tr>
<td>Radius (inj/ext)</td>
<td>30 cm / 67 cm</td>
</tr>
<tr>
<td>Sector type</td>
<td>Radial sector FDF triplet</td>
</tr>
<tr>
<td>Number of Sectors, N</td>
<td>12</td>
</tr>
<tr>
<td>Field index, k</td>
<td>3</td>
</tr>
<tr>
<td>Injected current</td>
<td>20 mA</td>
</tr>
<tr>
<td>Tune (hor/ver)</td>
<td>2.3 / 2.2</td>
</tr>
<tr>
<td>Injection period</td>
<td>24 μs</td>
</tr>
<tr>
<td>Core cycle period</td>
<td>100 μs</td>
</tr>
<tr>
<td>Acceleration period</td>
<td>26 μs</td>
</tr>
<tr>
<td>Acc. Period Duty Cycle</td>
<td>47%</td>
</tr>
<tr>
<td>Total Period Duty Cycle</td>
<td>24% (at 10 kHz)</td>
</tr>
</tbody>
</table>

Figure 1: A CAD rendering of the Radiatron accelerator

Lattice and Magnets

The lattice was designed initially using a simple thin-lens matrix model. We then proceeded to develop a single-particle tracking program in Mathematica [10] to allow the investigation of complex magnet geometries and field shapes.

After initial design was complete, ICOOL [11] was used to study error tolerances and to import magnetic field maps. These steps confirmed appropriate lattice design and stable working point and set limits for alignment errors. A model triplet magnet was fabricated and measured to confirm the magnet design.

The magnet achieves a quasi-scaling FFAG field via pole-shaping. Iterative modifications to the pole geometry were performed in order to match the path-integral of the field in each F and D to the ideal.
Components

Most of the components – magnets, vacuum chamber, and diagnostics – are being fabricated by RadiaBeam. The magnets have complex pole-face geometries that will be CNC machined. The vacuum chamber will be made of non-magnetic stainless steel with metal seals. The electron gun, the core and the power supply have been purchased from select suppliers. The diagnostics consists of two innovative, combined wire-scanner and pickup electrode probes which are mounted on a custom feedthrough. We also will install faraday cups at the injection location and the extraction arm. The extraction system is being designed by the Particle Beam Physics Laboratory at UCLA.

Experiment

The prototype Radiatron will be installed and commissioned in the PEGASUS laboratory at UCLA. This facility does not contain sufficient shielding to run the accelerator at full duty-cycle (24 kW), therefore it will be run in “burst mode” to demonstrate the high-power capabilities. The experimental goal will be to achieve high-current, high-duty cycle acceleration to 5 MeV and to extract the beam with high efficiency. Components are currently being fabricated and the accelerator will be commissioned later this year.

CONCLUSION

The Radiatron holds the potential to be a robust, high-power accelerator for industrial applications. Because it uses magnetic induction, rather than RF power, for acceleration, the systems involved will be more reliable and less expensive. The Radiatron will be offered for sale or license in mid-2008.

ACKNOWLEDGEMENTS

The authors would like to thank Fred Mills and Bruce Miller for their assistance on this project. The work is being supported by DOE Grant DE-FG02-04ER84051.

REFERENCES